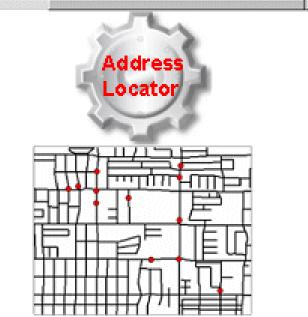


Creating and Maintaining Geocoding Address Locators in ArcGIS

Kenneth Smith – ESRI San Antonio Office

Copyright © 2009 ESRI. All rights reserved.

SCAUG 2009 ESRI Technical Sessions


Objectives

- Describe geocoding process
- Building and maintaining reference data
- Determine best address locator
- Creating custom address locator
- Customizing address locator files
- Wrap up

What is geocoding?

- A GIS operation for assigning a location to a street address.
- Result can be displayed on a map as spatial data.

	LOCATION	OBJECTID	CASE_NUM	TYPE	REPORT_DA	-
	145 S CHURCH ST	33	\$90002252	7	3/20/99	-
	1711 N ORANGE ST	100000.3 %	990100032	1000	1/2/99	
E	1702 N ORANGE ST	38	990302093	- 3	3/15/99	
	1144 OCCIDENTAL DR	53	990302239	6	3/20/99	
4	10000000			11111111		Ē

Geocoding process

- Parse Address
- Standardize Address
- Assign address element to category
- Calculate index values
- Search and identify candidates
- Assign score for each match
- Create list of candidates
- Match best candidate
- Indicate best matched feature

Original address	127 West Birmingham Drive, 92373
Address parsed	127 I West I Birmingham I Drive I 92373
Abbreviations standardized	127 I W I Birmingham I Dr I 92373
assigned to	[HN]: 127 [ST]: Dr [SD]: W [ZP]: 92373 [SN]: Birmingham
values	[HN]: 127 [ST]: Dr [SD]: W [ZP]: 92373 (index #92373) [SN]: Birmingham (Soundex index #B655)
Search addre	ess locator and identify candidates.
Score of each potential match established	Street Number Direction MatchScore Birmingham 129 W 90 Birmingham 125 W 85 Burnington 1100 W 60 Brunton 129 N 70 Broomstick 145 S 30
List of candidates filtered	Street Number Direction MatchScore Birmingham 129 W 90 Birmingham 125 W 85
Best candidate matched	129 W Birmingham Dr. , 92373
Matched feature indicated	124 126 128 130 132 W. Birmingham Dr.
	123 125 129 131

1-4

Address Locator

- A dataset in the geodatabase used to manage address information for features in order to perform geocoding.
- Address Locator contains
 - A snapshot of the reference data feature class
 - Rules and parameters that define an address format
 - Rules for standardizing and matching addresses
- Address Locator is independent of reference data

Reference data

- A dataset that contains both address and spatial information.
- Used to translate location descriptions into X,Y coordinates.
- Reference data sources include
 - Street centerlines
 - Zip Codes

Parcel map

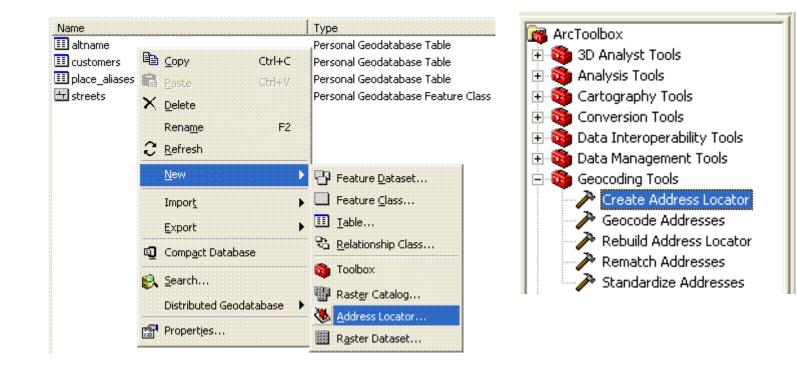
OBJECT	rid *	Shape *	L_F_ADD	R_F_ADD	L_T_ADD	R_T_ADD	PREFIX	NAME	TYPE	SUFFIX
	5	Polyline	0	3626	0	3648		Amherst	Ave	
	6	Polyline	3651	3650	3705	3806		Amherst	Ave	
	8	Polyline	3209	3210	3309	3308		Amherst	Ave	
	9	Polyline	3139	3138	3207	3206		Amherst	Ave	
	24	Polyline	2705	2700	2717	2720		Aspen	Way	

Preparing reference data

- Recognize standardized values for abbreviations
 - Verify abbreviations in your location data matches reference data.
 - Use Standardize Addresses tool in ArcToolbox.
 - Use option to standardize reference data on-the-fly when Address locator is created.
- Check for spelling errors in reference data
 - If alternate spelling of address element, consider using alternate place names table.
- Incomplete or outdated reference data
 - Reference data may need to be updated from time to time.

Determining Address Locator Style

- Which address locator style to use
 - What type of geometry is in reference data
- Format of address data
 - US Streets
 - US Alphanumeric Ranges
 - US Hyphenated
 - US One Address


US One Range

Style	Geometry	Representation	Search Params	Example
US Streets	Polyline	Left and right side	Address in one fld	234 N Main St.
US Alphanumeric	Polyline	Address with Grid code info	Address in one fld	N2W1700 County Rd
US Hyphenated	Polyline	Address with cross-street	Address in one fld	105-25 Union Blvd
US One Address	Polygon/Point	One address per feature	Address in one fld	71 Cherry Ln
US One Range	Polyline	One address per feature	Address in one fld	71 Cherry Ln

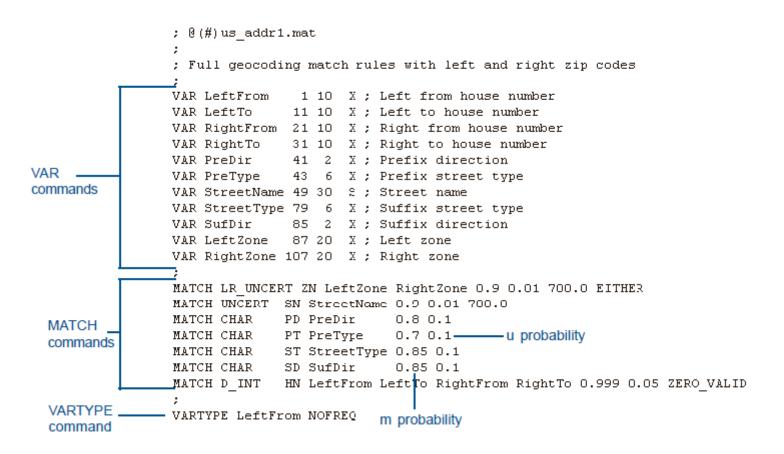
Copyright © 2009 ESRI. All rights reserved.

Creating a custom address locator

- Create Address Locator in ArcCatalog or ArcToolbox
- Can be created inside of geodatabase or file location
- Choose the address style to work with

Modifying address locator rule base files

- Accommodate additional elements
- Address locator rules files
 - .mat match rules
 - .dct match key dictionary
 - .stn standardization commands
 - ♦ .cls classification table
 - .pat pattern rules and actions


Match Rules

- Defines address fields from reference data for matching
- Defines method for address-to-reference data comparing
- Defines weights for each address field
- Defines probabilities for score comparison of candidates
 - m-probability compares candidate address with original address
 - North in candidate address would get a higher score if North was also in original address than if West was in original address and North was in candidate address
 - u-probability randomly compares candidate with original

Match file components

VAR, MATCH, and VARTYPE commands

The Match (.mat) file

VAR Command

- VAR commands specify variable names, field position, and missing codes in the match file.
- VAR format:

<variable name> <begin column> <length>

- <missing-value code> -
- ; comments

where <missing-value code> S = spaces, Z – zero or no spaces, N = negative numbers, 9 = all nines, X = no missing values

Example: VAR StreetName 37 28 S ; Street Name

MATCH Command

- MATCH commands specify comparison types, match key field, variable name, probabilities, and additional parameters
- MATCH format:
 - <comparison-type> <match key field> <reference file var name> <m-probability> <u-probability> [<additional parameters>] [<mode>]
 - where <comparison types> CHAR = Character, D_Int = Left/Right intervals, LR-CHAR = Left/Right Characters, LR_UNCERT = Left/Right uncertanty, NUMERIC = Numeric, UNCERT = uncertantity, INTERVAL_NOPAR = interval without parity

MATCH format:

where :

- <match key field> is the two character match key field from the .dct file
- <reference file var name> is the variable name defined in the VAR command
- <m-probability> is the probability the field agrees
- <u-probability> is the probability the field randomly agrees
- [<additional parameters>] are for UNCERT and LR_UNCERT.
- [<mode>] is for D_INT

MATCH format examples:

MATCH LR UNCERT ZN ZipLeft ZipRight 0.9 0.01 800 Either

MATCH CHAR PD PreDir 0.8 0.1

MATCH CHAR SD SuffixDir 0.7 0.1

MATCH D_INT HN FromLeft ToLeft FromRight ToRight 0.999 0.5 ZERO VALID

VARTYPE Command

- VARTYPE command indicates if frequency analysis is not performed on a field
- VARTYPE format:

<match variable name> <action>

where <action> = NOFREQ

Example: VARTYPE FromLeft NOFREQ

m and u probabilities

- MATCH commands all have m and u probabilities
- Image matches the probability that a field in the original address matches the standardized address, given a match. If StreetName mismatches 10 percent of the time, then the m probability should be set to 0.90 (1 - .10)
- u probability is the probability that a field in the original address matches the standardized address, given that both are unmatched randomly. This will usually be a very low value, so set to 0.01 or 0.1
- Example: MATCH CHAR PD PreDir 0.90 .01

Candidate Scoring

- Candidate scores are calculated from the field weights
- Field weights are calculated from the ratio of the m & u probabilities.
 - ♦ log²m/u if there is a match, log²1-m/1-u if there is no match

Cand	idates	Composite Score			
101 +	199 +	N +	MAIN +	ST +	100
101 +	199 +	-	MAIN +	ST +	90
101 +	199 +	N +	MAIN +	AVE -	85
101 +	199 +	-	MAIN +	-	60

Example:

Standardization file (.stn)

 The standardization file defines the commands used to parse and standardize an address. There is one .stn file for each address locator.

Components:

RECORD <recordsize> - always 256

TYPE <file-type> - always ASCII

INTERACTIVE

{DEBUG} – optional

STANDARDIZE < process> - example: STANDARDIZE us_streets

{OUTFILE <output-file>} – optional, results of pattern match

{<parsing-parameters>} – these override the defaults

Standardization file (.stn)

Example .stn file for us_addr locator:

- SEPLIST contains characters that tokenize the address.
 Default characters include () -/, #&;:

Match Key Dictionary (.dct)

- The match key dictionary file defines information for the match key field in the pattern file.
- Components:
 - <field-identifier>
 - <field-type>
 - <field-length>
 - <missing-code value>
 - <comments>

🗏 us_	addr.	dct - Wo	ordPa	ad 🔳 🗖 🐱				
File Ed	dit Viev	w Insert	For	mat Help				
D 🖬	۵	<i>t</i>	#	X 🖻 🛍 🗠 🖳				
\FORMAT\ SORT=N								
; 0	(#) us	_addr.	dct					
;	-							
	Stree	t addr	ess	match key				
; HN	Ν	10	v.	House Number				
	C	2		Pre-direction				
	c	6		Pre-type				
	č	30		Street Name				
	č	6		Suffix type				
SD	с	2		Suffix direction				
UT	С	20	X;	House Unit				
ZN	С	40	X;	Zone				
СТ	С	40	х;	City				
SA	С	20	X;	State Abbreviation				
ZP	С	12	X;	ZIP				
For Help	, press f	=1						

Component definitions:

- <field-identifier> is a two character unique field name
- <field-type> defines how the information is placed in the field.
 C=character, left justified, filled with trailing blanks
 - N=numeric, right justified, filled with leading blanks
 - NS=numeric, leading zeros are stripped off
 - M=mixed alpha-numeric, alpha is left justified, numeric is right justified, leading zeros are retained.
 - MN=mixed name, where field values starting with character are left justified, field values starting with number are indented
- <field-length> defines the field length in characters
- <missing-code value> where X = no missing code, typical
- <comments> starts with a semi-colon, any characters can follow

Classification table (.cls)

- The classification table (.cls) is used in the address standardization process. You can add or change how words in your reference file are standardized by modifying the .cls file.
- The .cls file contains keywords that are used to identify and classify parts of an address, such as street types (ST, AVE, BLVD, HWY) or directions (N, S, W, E).

Classification Table Components:

<keyword> <standardized-abbreviation>

<keyword-class> <comparison-threshold>

Component descriptions:

- <keyword> single word, no spaces, comment if not used
- <standardized abbreviation> abbreviation used to standardize address
- <keyword-class> used in pattern matching to specify the rules
 - values are: 0 null, D direction, T street type, M multi-unit,
 - B P.O. Box, O ordinals (FIRST, SECOND), C cardinals (ONE, TWO)
- <comparison threshold> degree of uncertanty, values are:
 - 900 exact match, 800 almost the same characters,
 - 750 probably the same characters, 700 probably different

Classification table (.cls)

Example .cls table – us_addr.cls

📮 us_addr.cls - Notepad	X	📕 us_addrc.cls - Notepad					
File Edit Format View Help		File Edit Format View Help					
\FORMAT\ SORT=Y	~	CNTRL	CENTRAL	А			^
; @(#)us addr.cls		COL	COLONEL	А			
; —		EXEC	EXECUTIVE	А			
; Explanation of classes		FX	FOX	А			_
;		GOV	GOVERNOR	А			
; 0 = NULL word (THE, OF)		GT	GREAT	А			
; $B = Box$ (BOX)		HGHDS	HIGHLANDS	А			
; Q = Post (POST)		HLL	HILL	А			
; Y = Office (OFFICE)		HLLS	HILLS	А			
; K = FPO APO GENDEL		JFK	"JOHN F KENN		А		
; $L = OLD$		RFK	"ROBERT F KE	NNEDY"	А		
; M = Multiunit (APT)		MLK	"MARTIN LUTH	ER KING"	А		
; E = Building type		KENNEDY	KENNEDY	А			
; F = Floor		MKT	MARKET	А			
; G = Directional modifier (END POINT VIEW) for		MTNG	MEETING	А			
EAST END		MEM	MEMORIAL	А			
; C = Cardinal number (ONE TWO)		MEMRL	MEMORIAL	А			
; O = Ordinal number (FIRST SECOND)		MIL	MILITARY	А			
; D = Direction (NORTH)		MILIT	MILITARY	А			
; T = Street type (ST AV)		MLTARY	MILITARY	А			
; R = Rural route (RR)		MLTRY	MILITARY	А			
; X = Route modifier (US, STATE)		MNT	MOUNT	А			
; $S = St$		MT	MOUNT	А			
; N = Number which may be followed by either an		MNTAIN	MOUNTAIN	А			
ordinal or a cardinal		MNTN	MOUNTAIN	A			
; (FIFTY, SIXTY, etc.)		MTN	MOUNTAIN	А			
; Z = Number suffix (TH, ND)		MNTNS	MOUNTAINS	А			
; H = Mile		PLEAS	PLEASANT	А			
; J = RURAL, STAR		PLSNT	PLEASANT	А			
; I = Comppany suffix (INC., AGENCY)		RESERV	RESERVATION	А			
; A = Abbreviations to expand		RESERVATION	RESERVATION	А		800.0	
; V = State names or abbreviations		SN	SAN	А			
; P = used internally		TOWNHSE	TOWNHOUSE	А			
;	~	TWNHOUSE	TOWNHOUSE	А			~

- The pattern file defines pattern rules and actions used to standardize addresses. This file is critical to the standardization process.
- The pattern file recognizes certain address format patterns and specifies how the address elemtns are assigned to different fields.
- Pattern files are encrypted, so geocoding tools such as the Standardizer Editor or encodepat.exe are used to edit and encrypt the pattern file. These tools are available as part of the ESRI Geocoding Developer Toolkit from ESRI Developer Network

- Example: 123 Terrace West Drive poses problems for the standard us_addr address locator. We can add the pattern Terrace West to the pattern file.
- The pattern is formatted with a series of operands separated by vertical bars ^ | D | ? | T | \$
- Typical operands are:
 - ^ numeric value
 - **D** direction (from classification file)
 - ? unknown
 - T street type (from classification file)
 - **\$ match up to end of field.**

Example use with ^ | \$: TX 78232 returns 78232

Example pattern file before encoding:

- COPY Copy value COPY_A – Copy standardized COPY_S – Copy w/ spaces CONCAT – Concatenate
- EXIT Exit pattern

```
📕 special_cases.xat - Notepad
                                  File Edit Format View Help
; special cases.xat
; example: 123 Terrace West Drive
 "Terrace West" is the street name
 | T="Terrace" | D="West" | $
COPY [1] {HN}
COPY [2] temp
CONCAT " " temp
CANCAT [3] temp
COPY temp {SN}
EXIT
 | & | S | T ; ex: 123 23rd St. Ct.
COPY [1] {HN}
COPY 2 temp
CONCAT temp
CONCAT A [3] temp
COPY temp {SN}
COPY A [4] {ST}
EXIT
^ | D | ? | T ; ex: 123 North Main
Avenue
COPY [1] {HN}
COPY A [2] {PD}
COPY S [3] {SH}
COPY A [4] {ST}
EXIT
```

Handling Intersections:	📕 intersections.xat - Notepad	
	File Edit Format View Help	
\& - "\" + intersection delimiter	; intersections	
	; example: N Main Ave E Clark Blvd	
** - universal class, used to reset tokens	D ? T \@	
	COPY_A [1] (P1)	
RETYPE – clear token value	COPY_S [2] {S1} COPY A [3] {T1}	
COBY A Convertenderdized	RETYPE [1] O	
COPY_A – Copy standardized	RETYPE [2] O	
COPY_S – Copy w/ spaces	RETYPE [3] O	
	; use the following pattern to clea	
EXIT – Exit pattern	; everything before the second part ; (E Clark Ave)	
-	, (E CIAIR AVE)	
	** \&	
	RETYPE [1] O	
	D ? Т	
	COPY_A [1] {P2}	
	COPY_S [2] {S2} COPY A [3] {T2}	
	EXIT	

Where to learn more

ArcGIS Desktop Help

Contents > Geocoding and Address Management > Building an address locator

ESRI Geocoding Rule Base Developer Guide

http://edn.esri.com/index.cfm?fa=downloads.detail&downloadId=22

ESRI Virtual Campus Training

Geocoding with ArcGIS Desktop

ArcGIS Online Resource Center

North American Address Locator Task

http://resources.esri.com/arcgisonlineservices/index.cfm?fa=content

Sample ArcScript for creating address locators

http://arcscripts.esri.com/details.asp?dbid=16186

Questions?